Deep Learning and Its Parallelization: Concepts and Instances

نویسندگان

  • Xiaqing Li
  • Guangyan Zhang
  • Keqin Li
  • Weimin Zheng
چکیده

......................................................................................................................... 3 1 Introduction ............................................................................................................. 3 1.1 Application Background ............................................................................... 4 1.2 Performance Demands for Deep Learning ................................................... 4 1.3 Existing Parallel Frameworks of Deep Learning ......................................... 4 1.4 Chapter Organization ................................................................................... 5 2 Concepts and Categories of Deep Learning ............................................................ 5 2.1 Deep Learning ............................................................................................. 5 2.1.1 Artificial Neural Networks ................................................................ 5 2.1.2 Concept of Deep Learning ................................................................. 7 2.2 Mainstream Deep Learning Models ............................................................. 8 2.2.1 Autoencoders ..................................................................................... 8 2.2.2 Back Propagation ............................................................................... 9 2.2.3 Convolutional Neural Network ........................................................ 11 3 Parallel Optimization for Deep Learning .............................................................. 13 3.1 Convolutional Architecture for Fast Feature Embedding ......................... 13 3.1.1 Introduction ...................................................................................... 13 3.1.2 CUDA Programming ....................................................................... 14 3.1.3 Architecture of Caffe ....................................................................... 17 3.1.4 Parallel Implementation of Convolution in Caffe ............................ 18 3.2 DistBelief .................................................................................................. 20 3.2.1 Introduction of DistBelief ................................................................ 20 3.2.2 Downpour SGD ............................................................................... 20 3.2.4 Sandblaster L-BFGS ........................................................................ 21 3.3 Deep Learning Based-on Multi-GPUs ...................................................... 22 3.3.1 Data Parallelism ............................................................................... 22 3.3.2 Model Parallelism ............................................................................ 23 3.3.3 Data-Model Parallelism ................................................................... 24 3.3.4 Example System of Multi-GPUs ..................................................... 25 4 Discussions ........................................................................................................... 26 4.1 Grand Challenges of Deep Learning with Big Data ................................. 26 4.1.1 Massive Amounts of Training Sample ............................................ 26 4.1.2 Incremental Streaming Data ............................................................ 26 4.1.3 Learning Speed with Big Data ......................................................... 26 4.1.4 Scalability of Deep Models .............................................................. 27 4.2 Future Work .............................................................................................. 27 References .................................................................................................................... 28 Deep Learning and Its Parallelization: Concepts and Instances Xiaqing Li, Guangyan Zhang, Keqin Li, and Weimin Zheng Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Deep Learning in Fixed Topology Networks

There is significant recent interest to parallelize deep learning algorithms in order to handle the enormous growth in data and model sizes. While most advances focus on model parallelization and engaging multiple computing agents via using a central parameter server, aspect of data parallelization along with decentralized computation has not been explored sufficiently. In this context, this pa...

متن کامل

Oil spill detection using in Sentinel-1 satellite images based on Deep learning concepts

Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

DeepNeural Networks (DNNs) are becoming an important tool inmodern computing applications. Accelerating their training is a major challenge and techniques range from distributed algorithms to low-level circuit design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for its parallelization. Specifically, we present trends in DNN architectures and th...

متن کامل

Learning Style in Theoretical Courses: Nursing Students’ Perceptions and Experiences

Introduction: Learning style as a whole is less regarded in nursing education. This study was conducted to explore, describe, and illustrate students' perceptions and experiences of learning style. The multiplicity feature of students' learning style in theoretical courses is presented in this article. Methods: In this qualitative study, 16 bachelor and master students in different academic se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015